Lesson 5. The Cross Product

1 Today...

- Computing the cross product
- The right-hand rule
- Finding areas with the cross product

2 Computing the cross product

- If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \vec{a} and \vec{b} is
- Note: $\vec{a} \times \vec{b}$ is a vector (unlike the dot product)
- The cross product is only defined for 3D vectors
- Mnemonic for taking the cross product:

Example 1. Let $\vec{a}=\langle 1,3,4\rangle$ and $\vec{b}=\langle 2,7,-5\rangle$. Find $\vec{a} \times \vec{b}$.

3 The right-hand rule

- The vector $\vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b}.
- Orthogonal which way? Right-hand rule
- Curl fingers of right hand from \vec{a} to \vec{b}
\Rightarrow Thumb points in direction of $\vec{a} \times \vec{b}$

Example 2. Find the direction of $\vec{u} \times \vec{v}$.

Example 3. Find two unit vectors orthogonal to both $\vec{a}=2 \vec{j}-\vec{k}$ and $\vec{b}=\vec{i}+4 \vec{j}$.

4 Areas and the cross product

- What about the magnitude of $\vec{a} \times \vec{b}$?
- If θ is the angle between \vec{a} and \vec{b}, then
- $\sin \theta=0$ when $\theta=$
\Rightarrow Two nonzero vectors \vec{a} and \vec{b} are parallel if and only if
- $|\vec{a} \times \vec{b}|=$ the area of the parallelogram determined by \vec{a} and \vec{b} :

Example 4. Find the area of the triangle with vertices $P(1,4,2), Q(-2,5,-1)$, and $R(1,3,1)$.

- Cross products between \vec{i}, \vec{j} and \vec{k} are pretty easy to remember:
$\vec{i} \times \vec{j}=\vec{k}$
$\vec{j} \times \vec{k}=\vec{i}$
$\vec{k} \times \vec{i}=\vec{j}$
$\vec{j} \times \vec{i}=-\vec{k}$
$\vec{k} \times \vec{j}=-\vec{i}$
$\vec{i} \times \vec{k}=-\vec{j}$
- Mnemonic:

- Properties of cross products: if $\vec{a}, \vec{b}, \vec{c}$ are vectors and c is a scalar:

$$
\begin{aligned}
\vec{a} \times \vec{b} & =-\vec{b} \times \vec{a} & (\vec{a}+\vec{b}) \times \vec{c} & =\vec{a} \times \vec{c}+\vec{b} \times \vec{c} \\
(c \vec{a}) \times \vec{b} & =c(\vec{a} \times \vec{b})=\vec{a} \times(c \vec{b}) & \vec{a} \cdot(\vec{b} \times \vec{c}) & =(\vec{a} \times \vec{b}) \cdot \vec{c} \\
\vec{a} \times(\vec{b}+\vec{c}) & =\vec{a} \times \vec{b}+\vec{a} \times \vec{c} & \vec{a} \times(\vec{b} \times \vec{c}) & =(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
\end{aligned}
$$

- The cross product is not commutative, i.e., $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$
- The cross product is not associative either, i.e. $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$

